Ku circles the telomere?
نویسنده
چکیده
all tumor cells are created equal when it comes to telomere biology. Tumor cells that do not express telomerase appear to utilize a telomerase-independent process to maintain telomere length, known as ALT for alternative lengthening of telomeres [1]. Although the existence of this process has been recognized for some time, the precise mechanism by which telomeres are maintained in these cells has been difficult to determine [2]. A recent report introduces a new element into the ALT story, implicating the Ku70/80 protein heterodimer (simply referred to as Ku) in the ALT process. Work reported by Li and coworkers in this issue of Aging, reveals a novel requirement for Ku in maintaining telomeres in immortal cells that utilize ALT [3]. The authors present data using a gene targeting approach to deplete both Ku subunits in two independent ALT cell lines. The ALT cells succumb to a combination of senescence and apoptosis without loss of telomere length or single-stranded telomere overhang. Surprisingly, the production of extra chromosomal DNA circles (t-circles) is reduced following Ku depletion as it is following depletion of MRE11/NBS1, known requirements for t-circle formation [4]. The results are striking because the Ku heterodimer is a central element in the nonhomologous end joining (NHEJ) DNA repair pathway, as it binds preferentially to free DNA ends and functions to recruit components of NHEJ DNA repair such as DNA-dependent protein kinase (DNAPK) and ligase IV. Although the Ku heterodimer is intimately involved in DNA repair, it has become apparent that Ku also participates in a wide variety of functions related to genome integrity. For example, Ku has been localized to origins of replication, and has been implicated in chromatin remodeling required for transcriptional activation and in telomere maintenance [5]. Ku also Commentary appears to play a role in aging. Deletion of the Ku 80 gene leads to an immune-deficient phenotype due to loss of proper VDJ recombination, but also induces a premature aging phenotype [6]. Ku 80 levels and DNA end binding also show a striking exponential correlation with species lifespan [7], suggesting that increased Ku function is requisite for long-lived species. Additionally, Ku levels decrease during replicative senescence [8]. Consistent with a higher requirement for Ku function in long-lived species, Ku appears to play an essential role in human cells while it is dispensable in rodent cells [9]. Ku has also been identified as a nodal point in systems analysis of …
منابع مشابه
Ku's essential role in keeping telomeres intact.
T elomeres, the specialized nucleoprotein structures present at the ends of linear chromosomes, function to prevent natural chromosomal termini from activating the DNA damage response and becoming substrates for inappropriate DNA repair. Telomeres are organized into lariat-like structures known as tloops, which are formed by the invasion of the terminal G-rich 3 telomeric overhang into the prox...
متن کاملThe Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination
The heterodimeric Ku complex has been shown to participate in DNA repair and telomere regulation in a variety of organisms. Here we report a detailed characterization of the function of Ku70 in the diploid fungal pathogen Candida albicans. Both ku70 heterozygous and homozygous deletion mutants have a wild-type colony and cellular morphology, and are not sensitive to MMS or UV light. Interesting...
متن کاملKu86 represses lethal telomere deletion events in human somatic cells.
Nonhomologous end joining (NHEJ), a form of DNA double-strand break (DSB) repair, is conserved from bacteria to humans. One essential NHEJ factor is Ku, which consists of a heterodimer of Ku70 and Ku86. In a plethora of model systems, null mutations for Ku70 or Ku86 present with defects in DNA DSB repair, variable(diversity)joining [V(D)J] recombination, and/or telomere maintenance. The complet...
متن کاملMre11 and Blm-Dependent Formation of ALT-Like Telomeres in Ku-Deficient Ustilago maydis
A subset of human cancer cells uses a specialized, aberrant recombination pathway known as ALT to maintain telomeres, which in these cells are characterized by complex aberrations including length heterogeneity, high levels of unpaired C-strand, and accumulation of extra-chromosomal telomere repeats (ECTR). These phenotypes have not been recapitulated in any standard budding or fission yeast mu...
متن کاملThe Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres
Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku-TLC1 interaction also impacts the cell-cycle-regulated association ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2011